If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-20x-12=0
a = 3; b = -20; c = -12;
Δ = b2-4ac
Δ = -202-4·3·(-12)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{34}}{2*3}=\frac{20-4\sqrt{34}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{34}}{2*3}=\frac{20+4\sqrt{34}}{6} $
| 15=-45÷x | | k/8=15/18 | | k/8=15/19 | | −13x−19=x+5 | | -5y+4=-36 | | (6x-5)=(2x-1) | | 5(x-4)+10=20 | | -4n+3n=n–8+3n-12 | | 65/7=h-21/7 | | c+24=3c-68 | | 15+18x=47 | | 3c-68=c+24 | | -6g+7g—18g=-10 | | 3(4-8)=-24+12x | | -2b+6=40 | | 2x+3x-12=13 | | 2+g=19 | | 1.5w+w=20 | | 2x+4=18* | | -2b+b=40 | | -18v=-4141 | | 3.8=2x-112 | | 2(4x+5)=31+1 | | 130+2x+1x+134+102+120=720 | | −13x+6x−11=7−5x | | -14=6+2w | | 2+4^3x=18 | | 2x=2(x13) | | 4(2x+1)=3x-11 | | -9+(x+1)^2=55 | | 5p+7(-4-3p)=-262 | | t-13=-22 |